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Conservation
of Energy and

Momentum

energy (EN-er-jee) n.: the capacity to do work.

WORK, MACHINES, AND POWER

6.1 Definition of Work The word work has a specific
meaning in physics. Work is done when a force is exerted on
an object causing the object to move in the direction of a compo-
nent of the applied force. When you hold a heavy load on
your shoulder, as long as you do not move you are not
doing any work on the load. You are exerting an upward
force that counteracts the downward force of gravity on the
load. You do work when you raise the load to your shoul-
der, when you carry it up a flight of stairs, or when you
pull it across the floor. In these cases, you exert a force that
has a component in the direction in which the object
moves.

Two factors must be considered in measuring work: the
displacement of the object and the magnitude of the force
in the direction of displacement. The amount of work, W,
equals the product of a displacement, Ad, and the force, F, in the
direction of the displacement.

W=FAd

When the force is measured in newtons and the dis-
tance through which it acts is measured in meters, the
work is expressed in joules (J). A force of one newton acting
through a distance of one meter does one joule of work. This
unit of work is named for the English physicist James Pres-
cott Joule. Note that a joule is a newton-meter.

For example, let us compute the work required to lift a

BIECTIVES

Define and calculate work and
power.

Define and calculate kinetic
energy and potential energy.
Define and calculate impulse
and momentum.

Apply the laws of conservation
of energy and momentum to
solve motion problems.
Differentiate between elastic
and inelastic collisions.
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The relationship Fy = uFy is ex-
plained in Section 4.7.

———— Ay -

Figure 6-1. Definition of work. The
work done by the applied force, Fj,
is equal to the product of F, the
component of Fa in the direction
of the displacement, and Ad, the
distance through which the mass
moves.

EXAMPLE

CHAPTER 6

1.0-kg mass to a height of 5.0 m. From the relationship
between mass and weight discussed in previous chapters,
we know that a force of about 9.8 N must be exerted to lift
a mass of 1.0 kg at sea level. Thus, the work is

W = FAd
= (9.8 N)(5.0 m)
=49]

If we slide the 1.0-kg mass at constant velocity along a
horizontal surface having a coefficient of sliding friction
0.30 for 5.0 m, the work required is

W = FAd
= ﬁFNAd
= (0.30)(9.8 N)(5.0 m)
=15]
In both instances, the force is applied in the direction in
which the object moves.

Suppose, however, that the force is applied to the object
in a direction other than that in which it moves. In that
case, only the component of the applied force that acts in
the direction the object moves is used to compute the
work done on the object. Thus in Figure 6-1, the relation-

ship between the applied force, F5, and the component in
the direction of motion, E, is

F=F,cos#
When the force is applied at an angle, 8, the normal force,
Fy, is equal to the weight of the object, Fy, minus the
vertical component of the applied force, or

FN=FW-FAsin9

This equation is used to calculate F5 when it is not given in
a problem, as shown in the following example. Then

W= F, Ad cos 0

A 95.0-kg crate is pulled for 12.0 m on a horizontal surface

at a constant velocity. The coefficient of friction between the crate and the
ground is 0.260. Calculate the work done when the force is applied at an

angle of 20.0°.



-

CONSERVATION OF ENERGY AND MOMENTUM

Solution

Step 1: = F/FN = Fa cos 0/(mg — Fa sin 6)
Fa = umg/(u sin 6 + cos 6)
~ (0.260)(95.0 kg) (9.80 N/kg)

(0.260)(0.342) + (0.940)
Fa Ad cos @

(235 N)(12.0 m)(0.940)
2.65 X 10° ]

=235 N

Step 2: W

i

PRACTICE PROBLEMS 1. A crate weighing 850 N is pushed up an in-
clined plane a distance of 10.0 m. The plane makes an angle of 15° with
the horizontal and the crate moves with constant velocity. The coefficient
of friction between the crate and the plane is 0.24. Calculate the work that
is done in pushing the crate. ~ Ans. 4.2 X 10°]

2. A girl pulls a wagon with constant velocity along a level path for a
distance of 45 m. The handle of the wagon makes an angle of 20.0° with
the horizontal, and she exerts a force of 85 N on the handle. Find the
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amount of work the girl does in pulling the wagon. Ans. 3.6 X 10°]

6.2 Work Done by Varying Forces In the examples of
work in Section 6.1, the forces involved did not vary. In
many problems involving work, however, the forces may
vary in direction, in magnitude, or in both during the time
that they are acting on an object. For example, when a
force is used to stretch a spring, the magnitude of the force
increases as the spring gets longer.

An easy way to determine the amount of work done by
a varying force is to use a graph. In Figure 6-2, the area
under the curved line represents the work done by a force
that varies in magnitude. The horizontal axis is the dis-
tance, Ad, in meters and the vertical axis is the force that
acts in the direction of motion, F, in newtons. The amount
of work required to provide the displacement indicated by
the curve up to point A, for example, is equal to the area
bounded at the top by the curve, at the right by a vertical
line from A to the horizontal axis, and at the left and bot-
tom by the two coordinate axes.

-
o
T

Force in the direction of
motion, N

a N W R OO N W ©
- —

2 3 4 56 78 910

(=]
-

Distance, m

Figure 6-2. Work done by a vari-
able force. The area under the
curve represents the total work.
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Distance, m

Figure 6-3. Work done by a con-
stantly increasing force. The total
work is represented by the blue
triangle.

Figure 6-4. Work in rotary motion.
The work done on the wheel is
equal to the product of the ap-
plied force, F, the radius of the
wheel, r, and the displacement of
the rim, Aé.

CHAPTER 6

To calculate the area of a geometric figure that is
bounded by one or more curved lines requires a branch of
mathematics called calculus. A good approximation is ob-
tained, however, by the use of suitable rectangles. For ex-
ample, the work indicated by the curve between points B
and C is approximately equal to the area of the blue rectan-
gle in the figure. Thus, the work is approximately equal to
the product of 2.0 m and 6.5 N, or 13 J.

The total amount of work that is represented by the area
under the curve can be found by adding the areas of many
rectangles formed in the same way as the one in the fig-
ure. If the rectangles are made very narrow, the answer
will be more accurate. An interesting way to measure the
area under a curve is to cut it out of a piece of paper, weigh
it, and compare it with the weight of a known area.

The problem of finding the total work done by a varying
force is somewhat simpler in the case of a stretching
spring, as long as the force is constantly applied in the
direction of the stretching. The force required to stretch a
spring depends on the stiffness of the spring, but the force
is directly proportional to the amount of stretching. (The
limits within which this relationship is true will be dis-
cussed in Chapter 7.) Consequently, a graph of the work
done in stretching a spring is shown in Figure 6-3. No
approximations are required in computing the total work
because the area of the triangle under the curve is exactly
equal to one-half the product of its base and height.

6.3 Work in Rotary Motion To compute the work
done in rotary motion, we make use of the principles of
radian measure (Section 5.6). In Figure 6-4 the displace-
ment of the rim of the wheel is designated by the arc Ad. If
the angle A @ is expressed in radians, then Ad = r A@. Sub-
stituting this expression for Ad in the work equation,
we get

W = FrA@

Furthermore, in Section 4.12 we saw that a torque, T, is
equal to the product of a force and the length of its torque
arm. In Figure 6-4, the torque arm is the radius of the
circle, so T = Fr. The work equation can now be written

W= TA@

which means that the work done in rotary motion can be

computed by finding the product of the torque producing

the motion and the angular displacement in radians.
For example, if the radius of the wheel in Figure 6-4 is
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2.0 m and a force of 12 N is applied tangentially to it, the
work done in a single revolution is

W= TAO
= FrA@
= 2qaFr
= 2(3.14)(12 N)(2.0 m)
=150]
6.4 Machines Six types of simple machines are shown
in Figure 6.5. A machine can be used to multiply force.
Other machines are either modifications of these simple
machines or combinations of two or more of them. The six
machines shown are actually variations of two basic types:

the pulley and the wheel and axle are forms of the lever,
and the wedge and screw are modified inclined planes.

Inclined plane

FJ\ FW -
Wheel and axle Wedge
Although a machine can be used to multiply force, it
cannot multiply' work. The work output of a machine can-
not exceed the work input. In a frictionless machine, work
output and work input would be exactly equal. In a ma-
chine that multiplies force, this equality means that the
distance over which the input force moves is always
greater than the distance over which the load moves.
The ratio of the useful work output of a machine to total
work input is called the efficiency.
Efficiency = Wourpur

Input

The efficiency of all machines is less than 100% because
the work output is always less than the work input. This is
due to the force of friction.

Thus in using a machine to lift an object, the efficiency
equation becomes

Fw Ah
Fa Ad

Efficiency =
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Figure 6-5. Simple machines.
Each machine multiplies force at
the expense of distance.

The ratio of the output force to
the input force in a machine is
called the mechanical advantage.

I"_M_'1 Simple

Fa machine

Figure 6-6. Principle of the simple
machine. In the absence of fric-
tion, the work output, Fy, Ah, is
equal to the work input, F, Ad.
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where Fyy is the weight of the object, Ah is the height
through which it is lifted, F4 is the input force applied to
the machine, and Ad is the distance through which F, acts
in the direction of the input motion.

The following example illustrates the use of the effi-
ciency equation in solving problems dealing with simple
machines.

memmsmm—— EXAMPLE A crate is pulled 2 m with constant velocity along an in-
cline that makes an angle of 15° with the horizontal. The coefficient of
friction between the crate and the plane is 0.160. Calculate the efficiency
that is achieved in this procedure. (Refer to Figure 4-18.)

Solution

(a) Finding Woutput:
The crate, with a weight of Fy, is lifted through a vertical distance
Ah = Ad sin 6. Thus,

(b) Finding Winpus:
The applied force is the sum of the force of friction, F;, and the force
along the incline, Fp:

Winput = FaAd = (F¢ + Fp)Ad
Substituting in the remaining Basic equations:
Winput = (wFw cos 8 + Fyy sin 6)Ad
(c) Combining both steps (a) and (b) gives the
Fw Ad sin 6
Fw Ad (u cos 6 + sin 6)
sin 6
= (w cos 6 + sin 6)
sin 15°
(0.160)(cos 15°) + (sin 15°)
= 0.63

Working equation: Efficiency =
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The efficiency of a pulley system is 73%. The

pulleys are used to raise a mass of 58 kg to a height of 3.0 m. What force
is exerted on the strand of the pulley if it is pulled for 18.0 m in order to

raise the mass to the required height? Ans.

130 N

6.5 Definition of Power Like the term work, the term
power has a scientific meaning that differs somewhat from
its everyday meaning. When we say a person has great
power, we usually mean that the person has great
strength or wields great authority. In physics, the term
power means the time rate of doing work.

You do the same amount of work whether you climb a
flight of stairs in one minute or in five minutes, but your
power output is not the same. See Figure 6-7. Power de-
pends upon three factors: the displacement of the object,
the force in the direction of the displacement, and the time
required.

Since power is the time rate of doing work,

W
At
where P is power, W is work, and At is time. Or, because
W = FAd and v = Ad/At,
FAd
P T Fv

When work is measured in joules and time is measured
in seconds, power is expressed in watts (W). A watt is a
joule per second. This unit is named in honor of James Watt,
who designed the first practical steam engine. Since the
watt is a very small unit, power is more commonly mea-
sured in units of 1000 watts, or kilowatts (kW).

I):

Figure 6-7. A power comparison. In
both cases, the girl does the same
amount of work in climbing the
stairs. However, in the lower draw-
ing her output of power is greater
because she gets to the top in
less time. (Kinetic energy is disre-
garded in these examples.)

Figure 6-8. James Watt in his
workshop. How many pieces of
apparatus can you identify?
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The terms watt and kilowatt are used frequently in con-
nection with electricity, but also apply to quantities of power
other than electric power. The watt is the unit of power
in the metric system and is used to express quantities of
mechanical as well as electric power. Another frequently
used unit is the “horsepower.” It is equal to 746 watts.

s EXAMPLE A woman drives her car up a parking ramp 12.0 m high at
a constant velocity in 20.0 s. The mass of the car is 1.50 metric tons.
Calculate the power output of the car’s engine during this time, in horse-
power (1 hp = 746 W).

Solution

Working equation: P =

mg Ad

At

_ (1.50 x 10° kg)(9.80 m/s)(12.0m) (1 hp)

(20.0 s) (746 W)

=11.8 hp

6.6 Power in Rotary Motion By using radian mea-
sure, we can compute the power involved in rotary mo-
tion the same way we calculated the work done in rotary
motion in Section 6.3. Substituting the expression for
work in rotary motion, TA6, the power equation becomes

TA®
B= At

We saw in Section 5.6 that the time rate of angular dis-
placement, A¢/At, is called the angular velocity, o, so

P=Tw
The power required to maintain rotary motion against an

opposing torque is the product of the torque maintaining
the rotary motion and the constant angular velocity.
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(QUESTIONS: GROUP A

1.

Explain whether work, in the physics
sense, is being done on a suitcase
when you (a) pick it up from the
floor, (b) carry it at a steady speed on
a level street to the bus stop, (c) hold
it above the ground while you wait
for the bus, and (d) board the bus
with the suitcase.

What represents the work done when
a graph of force versus displacement
is constructed?

What are three ways to determine the
work that is done when a force-
versus-displacement graph is not a
straight line?

If you were to use a machine to in-
crease the produced force, what factor
would have to be sacrificed? Give an
example.

- (a) In calculating the work done in

rotary motion, what is the expression
that takes the place of Ad? (b) What
is the equation used in finding the
amount of rotary work?

. For an object moving at a constant

speed, list the two expressions for
determining the object’s power.

GROUP B
7. (a) Using Figure 6-3, determine the

10.

average force needed to stretch the
spring a distance of 4.0 m. (b) How
much work is done in stretching the
spring 4.0 m?

Use the graph of force versus dis-
placement shown in Figure 6-3 to de-
rive an equation for the work done
by the spring.

. If a machine cannot multiply the

amount of work, what is the advan-
tage of using such a machine?

A heavy football player climbs a flight
of stairs. Halfway up the stairs, a
member of the girls” track team
rushes past him. Is it possible for

11.
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both to develop the same amount of
power in climbing up the stairs?

Find the horsepower rating on a lawn
mower or an electric tool. Convert
this amount to units of kilowatts.

PROBLEMS: GROUP A

A weight lifter heaves a 200.0-kg bar-
bell from the floor to a position di-
rectly over his head. If the distance
from the floor to his extended arms is
2.50 m, how much work has the
weight lifter done?

(a) How much work is done in lifting
a 750-kg piano vertically 3.0 m to a
large set of doors? (b) How much
work would be done if the piano was
pushed up a frictionless inclined
plane to the same set of doors? (¢) If
the inclined plane was 5.0 m long,
how much force would have been
needed?

How much work is done in pushing
a 45.5-kg wooden trunk a distance of
9.75 m across the floor if the coeffi-
cient of friction is 0.250?

Calculate the work done when a sled
is pulled 20.0 m by a force of 105 N
exerted on a rope that makes an
angle of 50.0° with the horizontal.

. A pulley system is used to lift the

piano mentioned in Problem 2. If a
force of 2.0 x 10° N is applied to the
piano, and as a result the rope is
pulled in 14 m, what is the efficiency
of the machine?

How much power does a 63.0-kg ath-
lete develop as he climbs a 5.20-m
rope in 3.50 s?

A 45.0-kg cyclist exerts her full
weight on the pedal with each stroke.
How much work is done during 100.0
revolutions of the pedals as they turn
in a 30.0-cm radius?

What is the power rating in kilowatts
of a 1.20 x 10°-kg elevator that moves
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3.50 m from one floor to the one
above it in 4.30 s?
9. A 23.0-cm screwdriver is to be used

to pry open a can of paint. If the ful-

crum is 2.00 cm from the end of the

blade and a force of 84.3 N is exerted

at the end of the handle, what force
is applied to the lid?

10. A pulley system has an efficiency of
87.5%. How much of the rope must
be pulled in if a force of 648 N is
needed to lift a 105-kg desk 2.46 m?

11. A 175-N bucket of water is to be

lifted from the bottom to the top of a

7.30-m well. If a force of 42.0 N is
applied at the end of the 36.3-cm
handle, how many times must the

handle be turned to accomplish this?
12. A 0.50-kW motor moves a lawn trac-

tor at a constant 1.2 m/s. What force
is being applied to the tractor?

GROUP B

13. A force of 25.0 N is applied to a
4.50-kg object that is initially at rest.
(@) How much work is done during

the first 3.00 s of its motion? (b) How
much power is developed during this

same period of time?

14. A 65-kg crate is pushed at a constant

speed up a 3.6-m plane inclined at

ENERGY

6.7 Gravitational Potential Energy In Chapter 1 we
saw that there are two kinds of energy, potential and ki-

Potential and kinetic energy can
each have a variety of forms.

15.

16.

17.

18.

CHAPTER 6

24° above the horizontal. If the coeffi-
cient of friction is 0.17, how much
work is done?

A 175-kg flywheel is a uniform disk
1.80 m in diameter. (a) How much
work is required to bring it from rest
to 94.0 rev/min in 2.00 min? (b) What
is the machine’s power rating in kilo-
watts?

An elevator motor is rated at

25.0 kW. At what speed could the
motor lift an 850.0-kg elevator with
three passengers whose masses are
24.3 kg, 45.0 kg, and 64.0 kg?

What power must the engine of a
1680-kg car develop to move at a con-
stant speed of 24.5 m/s up a 15° in-
cline if the coefficient of friction be-
tween the tires and road is 0.090 0?
A 35.4-kg box falls off a truck moving
at 40.0 km/h. The box slides to a stop
after a distance of 17.5 m. Calculate
(a) the force of friction on the box,
(b) the work done in stopping it, and
(c) the coefficient of friction between
the box and pavement.

. How much work is done in pushing

an 85.4-kg grocery cart 2.05 X 10> m
if a force is applied at a 40° angle to
the horizontal and the coefficient of
friction between the wheels and the
floor is 0.025 0?

netic. In the following sections, we will deal quantitatively
with these concepts and see how the various forms of en-
ergy are expressed in terms of work units.

The potential energy acquired by an object equals the
work done against gravity or other forces to place it in
position, as shown in Figure 6-9. As we saw in Section 6.1,
the equation for calculating work when the force acts in
the same direction as the displacement is

W = FAd
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Therefore the equation for potential energy is
E, = FAd

In lifting an object, F is its weight, which from Newton’s
second law of motion equals mg, and Ad is the vertical
distance Ah through which it is lifted. Hence the potential
energy equation can be written

E, = mgAh

The gravitational potential energy defined by this equation is
expressed in relation to an arbitrary reference level where
h = 0. The reference level is usually determined by the
nature of the problem. Sea level, street level, ground level,
or floor level are all commonly used reference levels.

When the mass of an object is given in kilograms, the
height in meters, and the acceleration due to gravity
in m/s?, the gravitational potential energy is expressed in
joules. Thus if a 50-kg mass of steel is raised 5.0 m, its
gravitational potential energy is

E, = mgAh
E, =50 kg X 9.8 m/s®> X 5.0 m
E, =25 X 10%]

6.8 Kinetic Energy in Linear Motion As we saw in
Section 3.7, the velocity of a freely falling object that starts
from rest, expressed in terms of the acceleration of gravity
and the distance traveled, is given by the equation

v = V2gAd

Solving for Ad, we obtain

vz

28
Since Ad in this equation corresponds to Ak in the equa-
tion E, = mgAh, let us substitute the expression we have
- just derived for Ad in place of Ah. The equation for the
kinetic energy of a moving object then becomes
'UZ
Ex mg X 2g

Ad =

Ex = $mv?

Although this equation for kinetic energy was derived
from the motion of a falling body, it applies to motion in
any direction or from any cause.

As in the case of gravitational potential energy, kinetic
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Figure 6-9. Examples of potential
energy. Can you identify the refer-
ence |evel for each pair of situa-
tions?
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Figure 6-10. Examples of Kinetic
energy. What is the frame of ref-
erence for the velocity of the mov-
ing object in each case?

The wheels of a moving car have
both linear and rotational kinetic
energy.

CHAPTER 6

energy is expressed in joules if the mass is given in kilo-
grams and the velocity in meters per second. Thus, if a
baseball has a mass of 0.14 kg and it’s thrown with a veloc-
ity of 26 m/s, its kinetic energy is

Ex = imv?
_0.14 kg (26 m/s)*
=
2

6.9 Kinetic Energy in Rotary Motion As we saw in
Section 5.6, the angular velocity, w, of a rotating body that
starts from rest is

w = V2aAl

where a is the angular acceleration and A#@ is the angular
displacement. The equation given in Section 5.8 for the
relationship among torque, rotational inertia, and angular
acceleration is

T= I«
Solving both of these expressions for angular acceleration,

(.02

a = 2A0 and a = T
Setting these two expressions equal,
T w?
T 240
Solving for TA#,
Tag = 1
2

When only the net force and torque are considered in
these equations, all of the work done to produce rotation
appears as kinetic energy. Since for rotary motion W =
TA#, the equation for kinetic energy, E, is

EK = %1&]2

The wheel of a moving automobile has both linear mo-
tion and rotary motion. The wheel turns on its axle as the
axle moves along parallel to the road. The kinetic energy
of such an object is the sum of the kinetic energy due to
linear motion and the kinetic energy due to rotary motion.

Ex = mv? + Ho?
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s 'XAMPLE A metal disk with a mass of 1.30 kg rolls along a horizontal
floor with a constant velocity of 1.68 m/s. Calculate the kinetic energy of
the moving disk.

Solution

From Fig. 5-11 we know that I = imr*.

Working equation: Ex = $mv® + 3Gmr®)(v/r)?
= mv?
= $(1.30 kg)(1.68 m/s)?
=2.75]

When energy is supplied to an object and simulta-
neously gives it both linear and rotary motion, the energy
division depends on the rotational inertia of the object. If a
ring and a solid disk of equal mass and diameter roll down
the same incline, as in Figure 6-11, the disk will accelerate
more. Its rotational inertia is less than that of the ring, thus
its rotational kinetic energy is less. Its linear kinetic energy
is therefore greater than that of the ring; the disk acquires
a higher linear velocity and reaches the bottom of the in-
cline first. However, at the bottom of the incline the total
kinetic energy of the ring will be the same as that of the
disk since both ring and disk had the same gravitational

_ potential energy at the top.

Figure 6-11. A kinetic energy race.
If the ring and disk have equal
masses and diameters, the rota-
tional inertia of the disk is less
than that of the ring. Hence the
disk will accelerate more.
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Compare Equation 3 with the one
for kinetic energy in Section 6.8.
Why are they similar?

Figure 6-12. Apparatus for mea-
suring the force constant of a
spring. If the weight is made to
move up and down, the inter-
change of potential and kinetic
energy can also be measured.

CHAPTER 6

6.10 Elastic Potential Energy When a spring is com-
pressed, energy is stored in the spring. At any instant dur-
ing the compression, the elastic potential energy in the
spring is equal to the work done on the spring. The poten-
tial energy in a stretched or compressed elastic object is
called elastic potential energy.

The work required to stretch or compress a spring does
not depend on the weight of the spring. Consequently,
gravity is not involved in the measurement of elastic po-
tential energy. Instead, the work required to stretch or
compress a spring is dependent upon a property of the
spring known as the force constant. The force constant does
not change for a specific spring so long as the spring is not
permanently distorted.

The force required to stretch a spring is written as

F = kAd (Equation 1)

where k is the force constant of the spring and Ad is the
distance over which F is applied. We noted in Section 6.2
that the force is directly proportional to the amount of
stretching (within limits). Consequently, the work done
on the spring also varies directly with the amount of
stretching. The total amount of work, therefore, is given
by the equation.

W= {FAd (Equation 2)

where F is the force exerted on the spring at the end of the
stretch through distance Ad. Because the force varies from
zero to F, the equation gives the average of these two val-
ues, or sF.

Substituting the expression for F from Equation 1 in
Equation 2, we get

W= $k(Ad)? (Equation 3)

This equation applies to the compression of a spring as
well as the stretching of a spring. Since the potential en-
ergy of an object is equal to the work done on the object,
Equation 3 can be rewritten as a potential energy equation

E, = tk(Ad)?

where E, is the elastic potential energy. This equation rep-
resents ideal conditions. In actual practice, a small fraction
of the work of stretching or compression is converted into
heat energy in the spring and does not show up as elastic
potential energy.

6.11 Conservation of Mechanical Energy As we saw
in Section 5.10, the vibration of a mass on a spring and the
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swinging of a pendulum are both examples of simple har-
monic motion. Both can also be used to illustrate an im-
portant principle of physics called the law of conservation
of mechanical energy. This law states that the sum of the
potential and kinetic energy of an energy system remains con-
stant when no dissipative forces act on the system.

Gravitational forces and elastic forces are called conserva-
tive forces because they conform to the law of conservation
of mechanical energy. There are forces, however, that pro-
duce deviations from the law of conservation of mechani-
cal energy. The force of friction is an example. Forces of
this type are called nonconservative, or dissipative forces.

The reason that friction is a dissipative force is that it
produces a form of energy (heat) that is not mechanical.
Energy is lost to the system. When considered in light of
the more comprehensive law of conservation of total en-
ergy, there is no “lost” energy, of course. The calculation
of heat energy and its role in energy transformations will
be discussed in Chapter 8.

Another way to distinguish between conservative and
dissipative forces is to observe the relationship between
the force and the path over which it acts. In the case of a
conservative force, the work done and energy involved
are completely independent of the length of the path, pro-
vided the paths have the same end point. For example, in
the illustration of gravitational potential energy in Figure
6-13, the gravitational potential energy of both men is the
same, provided they have equal masses, even though one
of them travels a greater distance than the other one. The
mass of the men and their height above the reference level
are the only factors required for the calculation of gravita-
tional potential energy.

The amount of heat energy lost through friction, a dissi-
pative force, can be quite different for two objects moving
through the same height, however. Where the path is
longer, the amount of mechanical energy that is converted
to heat energy will be greater. This is true even if the fric-

~ tional forces remain constant. Thus the work done by a

given dissipative force varies directly with the length of
the object path.

(QUESTIONS: GROUP A
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This is a special case of the law of
conservation of energy discussed
in Section 1.13.

i

Figure 6-13. The work done by
conservative forces is independent
of the path. The potential energy
of the man is, in each case, de-
pendent only on his mass and his
distance above the reference level.

arrow. (c) A student who climbs the

1. What forms of energy are present in stairs to the school’s library. (d) A
the following situations? (a) A diver penny that is dropped from the second
who stands on the edge of a 10-m floor. (e) The wheel of a wagon that is
platform. (b) A bowstring that has rotating as the wagon is pulled up a

been pulled back ready to launch an hill.
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2. How does rotary kinetic energy differ
from linear kinetic energy?

3. What would be the shape of a graph
that shows an object’s kinetic energy
as a function of the object’s speed? Be
specific.

GROUP B

4. The kinetic and gravitational potential
energy of a nail being driven into a
piece of wood change very little.

(a) What happens to the work done by
the hammer? (b) Does this violate the
law of conservation of energy?

5. Describe how the energy changes as a
pole vaulter approaches the bar, clears
the bar, and lands on the cushions
below the bar.

PROBLEMS: GROUP A

1. A 65-kg diver is poised at the edge of
a 10.0-m platform. Calculate the div-
er's gravitational potential energy rel-
ative to the pool.

2. What is the linear kinetic energy of a
1250-kg car moving at 45.0 km/h?

3. The force constant of a spring in a
child’s toy car is 550 N/m. How much
elastic potential energy is in the spring
if it is compressed a distance of 1.2 cm?

4. (a) What is the potential energy of a
1050-N rock on the edge of a cliff that
is 20.4 m high? (b) If the rock falls,
what is its kinetic energy when it

~ strikes the ground? (c) How fast is
it moving when it strikes the ground?

5. Calculate the rotary kinetic energy
of a 32-cm diameter bicycle wheel
with a mass of 5.5-kg as it spins at
65 rev/min.

6. A force of 22 N is exerted horizontally
on an 18-kg box to move it 7.6 m
across the floor. If the box was
initially at rest and is now moving
at 3.2 m/s, calculate (a) the work
done, (b) the final kinetic energy of

7
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the box, and (c) the energy converted
to thermal energy due to friction.

A 72-kg pole vaulter running at

8.4 m/s completes a vault. If all of his
kinetic energy is transformed into
gravitational potential energy, what is
the maximum height of the bar?

To cut down on injuries, a highway
guardrail is designed to be moved a
maximum of 5.00 cm when struck by
a car. What is the minimum force
constant of the material in the guard-
rail if it is to withstand the impact of
a 1250-kg car moving at 15.0 km/h?
(a) Calculate the rotary kinetic energy
of the earth. (b) What is the earth’s
average linear kinetic energy as it or-
bits the sun?

GROUP B

10.

11.

12.

A 3.00-kg ball rolls up a 45° incline.

(a) If the ball is moving at 5.00 m/s at
the bottom, what is its initial rotary
and linear kinetic energy? (Ignore the
effect of friction.) (b) How far does the
ball roll before it stops?

A 100.0-g arrow is pulled back

30.0 cm against a bowstring. If the
force constant of the bow and string
is 1250 N/m, at what speed will the
arrow leave the bow?

A 350.0-kg roller coaster car is poised
at the top of a 42.0-m hill. (a) How
fast will the car be moving at the bot-
tom of the incline? (b) As it goes over
the top of the next hill, 30.0 m high?
(c) Could this problem be done with-
out knowing the mass of the car?

PHYSICS ACTIVITY

Obtain two soup cans of equal mass and
size, one having solid contents and the
other loose. Hold the cans at the top of
an inclined plank and release them simul-
taneously. Which one reaches the bottom
first? Why?
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MOMENTUM

6.12 The Nature of Momentum More force is needed
to stop a train than to stop a car, even when both are
moving with the same velocity. A bullet fired from a gun
has more penetrating power than a bullet thrown by
hand, even when both bullets have the same mass. The
physical quantity that describes this aspect of the motion
of an object is called momentum. Momentum is the product of
the mass of a moving body and its velocity. The equation for
momentum is

p=mv

where p is the momentum, m is the mass, and v is the
velocity of an object.

In the example of the car and train, the greater mass of
the train gives it more momentum than the car. Conse-
quently, a greater change of momentum is involved in
stopping the train than in stopping the car. In the case of
the bullets, the greater momentum of the fired bullet is
due to its greater velocity; a large change of momentum
takes place when the speeding bullet is stopped.

From Newton’s second law of motion, we can derive an
important relationship involving momentum. In Section
3.5 we saw that the equation for average acceleration is
4., = Av/At. When we substitute this value of a in the
equation for Newton’s second law, F = ma, we get

mAv
At

The product of a force and the time interval during which it
acts, FAL, is called impulse. Hence from Newton’s second
law of motion we have established that impulse equals
change in momentum. The equation F = mAv/At tells us
that when a force is applied to a body, the body’s rate of

F = or FAt=mAv

_ change of momentum is equal to the force. Since the equa-

tion is a vector equation, we also know that the body’s rate
of change of momentum is in the direction of the force.

A good example of the relationship between impulse
and change in momentum is a bat hitting a baseball. See
Figure 6-14. The impulse imparted to the ball depends on
the force with which the ball is hit and the length of time
during which the ball and bat are in contact. On leaving
the bat, the ball has acquired a momentum equal to the
product of its mass and its change of velocity. In a sense,
the impulse produced the change of momentum; hence
the two are equal.

131

The first of these equations states
that force is the time rate of
change of momentum. The second
equation states that impulse
equals the change in momentum.

Figure 6-14. During the time of
contact, much of the momentum of
the bat is transferred to the base-
ball.
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Figure 6-15. Conservation of
momentum. On a frictionless sur-
face, the momentum of the boy
toward the left is equal to the
momentum of the man toward the
right.

Figure 6-16. Conservation of
momentum in a rocket. The Space
Shuttle is launched when momen-
tum equal in magnitude to that of
the exhaust gases is imparted to
the space vehicle.

CHAPTER 6

6.13 The Conservation of Momentum In Figure 6-15,
a boy with a mass of 40 kg and a man with a mass of 80 kg
are standing on a frictionless surface. When the man
pushes on the boy from the back, the boy moves forward
and the man moves backward.

The velocities with which the boy and the man move are
specified by one of the most important principles of phys-
ics, the law of conservation of momentum. This law states
that when no net external forces are acting on a system of objects,
the total vector momentum of the system remains constant.

Let us apply this law to the situation in Figure 6-15.
Initially the man and the boy are at rest. The system,
therefore, has zero momentum. When the man and the
boy move apart, the law of conservation of momentum
requires that the total vector momentum remains zero.
Hence the momentum of the boy in one direction must
equal that of the man in the other direction.

If the boy moves with a velocity of 0.50 m/s, the man
will move with a velocity of 0.25 m/s since the mass of the
man is twice as great as that of the boy. The momentum of
the boy in one direction (40 kg X 0.50 m/s) must equal the
momentum of the man in the opposite direction
(80 kg x 0.25 m/s).

An important application of the law of conservation of
momentum is the launching of a rocket. When a rocket
fires, hot exhaust gases are expelled through the rocket
nozzle. The gas particles have a momentum equal to the
mass of the particles multiplied by their exhaust velocity.
Momentum equal in magnitude is therefore imparted to
the rocket in the opposite direction. See Figure 6-16. New-
ton’s third law of motion (Section 3.10) is a special case of
the law of conservation of momentum.

6.14 Inelastic Collisions The law of conservation of
momentum is very helpful in studying the motions of col-
liding objects. Collisions can take place in various ways,
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and we shall see how the momentum conservation princi- o ’s
ples apply in several such cases.

In Figure 6-17(A), two carts of equal mass approach each
other with velocities of equal magnitude. A lump of putty
is attached to the front of each chart so that the two carts
will stick together after the impact. This situation is an
example of inelastic collision. Since the carts are traveling
along the same straight line, it is also an example of a
collision in one dimension.

The momentum of cart A is mva. It is equal in magni- Figure 6-17. An inelastic collision.
tude to the momentum of cart B, mgvg. However, the di- The carts have equal masses and

rection of v, is opposite to the direction of vy, so approach each other with veloci-
ties of equal magnitude along the
_ same straight line. The total mo-

Up = —0 ;
A B mentum of the system is the
same before and after the colli-
Consequently, MAVA = —MpUp sion.
and MaUA + mgovg =0

This means that the total vector momentum of the sys-
tem of two moving carts is zero. (We assume that the sys-
tem is isolated, that is, there are no net external forces
acting on it. In actual collision studies, the external force of
friction is usually minimized by using rolling carts or air
tracks, such as the one shown in Figure 6-18.)

Figure 6-18. An air track designed
for collision experiments. Air jets
minimize the friction between the
track and the masses placed on it.

After the carts in Figure 6-17(B) collide, they both come
to rest. The cart velocities, v5 and vg, are now both zero;
the sum of the momenta of the two carts is zero, just as it
was when the carts were in motion in opposite directions.
Thus the total vector momentum of the system is un-
changed by the collision.

If one of the carts has a greater mass than the other,
although its velocity is still of equal magnitude but oppo-
site sign, the outcome of the collision is different. After
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Kinetic energy is not conserved in
an inelastic collision.

CHAPTER 6

impact, the combined carts will move in the direction of
the cart with the larger mass. The velocity of the combined
carts will be such that the total momentum of the system
remains unchanged.

For example, suppose

my = 2mg
and va = —Uvg, as before.
Then, mavs + mgvg #0
m s oy
Since mg = —éi, by substitution,

1 N, |
MATUA — 2MAUA = ZMAUA

This means that the total momentum of the system, before
and after the collision, is $mavs; the combined carts
will move with this momentum in the direction of the orig-
inal velocity of cart A. The velocity after the collision can
be found by dividing the total momentum by the total
mass

ImavA
fma

= dva

When carts of equal and opposite momenta collide in-
elastically, they come to rest. Before the collision they have
kinetic energy; after the collision, they do not. This is typi-
cal of all inelastic and partially elastic collisions. Much or
all of the kinetic energy that the moving objects have be-
fore collision is converted into heat or some other form of
energy. If all these forms of energy are taken into account,
the law of conservation of energy holds true for inelastic
collisions. But kinetic energy alone is not conserved.

6.15 Elastic Collisions When colliding objects rebound
from each other without a loss of kinetic energy, a per-
fectly elastic collision has just occurred. The only perfectly
elastic collisions occur between atomic and subatomic par-
ticles. The situation can be approximated, however, by the
use of hard steel balls or springs on an air track. The mo-
mentum conservation law holds for elastic collisions as
well as inelastic ones and for collisions that are partly elas-
tic and partly inelastic.

The law also holds for collisions in two dimensions, that is,
when the colliding objects meet at an angle other than
head-on. Figure 6-19(A) shows the elastic, two-dimen-
sional collision of two balls of equal mass. Ball B collides at
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- ®
® vy i Figure 6-19. A vector diagram can
\_ Mavy be used to show that the total
Ug momentum and kinetic energy of
'Y a system both remain constant in
(A (B) a two-dimensional collision.

an angle with ball R, which is initially at rest. Figure

6-19(B) is the vector diagram representing the momenta of

the balls before and after collision. Review the parallelogram method
In Figure 6-19(B), mgvg is the momentum of the black of adding vectors explained in

ball before the collision. Since the blue ball is stationary Section 2.11.

before the collision, its momentum is zero and is not rep-

resented by a vector. The total momentum of the system

before collision is

mgvg + 0 = mgvg

After the collision, the measured velocities of the black
and blue balls are v’z and v’y respectively, in the directions
indicated. The total momentum now is the vector sum
mgv'g + mgv'r. Since the momentum is conserved, the
vector mgvg must equal the vector sum of mgv's and mgv'g.
The vector diagram appears as a closed triangle.

Since kinetic energy is also conserved in Figure 6-19,

imygvg® = tmpv'g® + Imgv'g?

Since the two balls have equal masses, this equation can
be simplified to

UBQ - ,DPBZ + ,U!RZ

This is the equation that relates the sides and hypotenuse
of a right triangle, as in Figure 6-19(B). So it follows from
the laws of conservation of energy and momentum that,
when a moving ball strikes a stationary ball of equal mass
other than head-on in an elastic collision, the two balls
move away from each other at right angles.

The conservation of momentum also holds for partially
elastic collisions, for collisions involving more than two
bodies, and for three-dimensional situations. The follow-
ing examlpes show how to solve collision problems.

s EXAMPLE A 1.20-kg cart that has an eastward velocity of 0.50 m/s
collides head-on inelastically with a 1.60-kg cart having a westward ve-
locity of 0.70 m/s. Disregarding the slowing-down effects of friction, cal-
culate the new velocity (speed and direction) of the two-cart system.
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Solution

MEVE + mwlw

Working equation: vg.w =
Me+w

(1.20 kg)(0.50 m/s) + (1.60 kg)(—0.70 m/s)
(1.20 kg + 1.60 kg)

= —0.19 m/s (minus sign indicates westward motion)

sssssssssms EXAMPLE A ball moving eastward with a speed of 0.70 m/s hits a
stationary ball of equal mass in an elastic collision. After the collision, the
second ball moves away in a direction 30° north of east. Calculate the
speed of this ball. (Refer to Figure 6-19(B).)

Solution

Working equation: v'g = vg cos 6
= (0.70 m/s)(cos 30°)
=0.61 m/s

6.16 Angular Momentum For rotary motion, the re-
lationship between impulse and the change of angular
momentum is similar to that for linear motion. Using the
symbols for rotary motion, the equation becomes

TAt = Iwg — lw;

where TAt is the angular impulse and lw¢ — lw; is the
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change in angular momentum. The dimensions of both an-
gular impulse and angular momentum are kg-m?/s.

Just as the linear momentum of an object is unchanged
unless a net external force acts on it, the angular momentum
of an object is unchanged unless a net external torque acts on it.
This is a statement of the law of conservation of angular mo-
mentum. A rotating flywheel, which helps maintain a con-
stant angular velocity of the crankshaft of an automobile
engine, is an illustration. The rotational inertia of a fly-
wheel is large. Consequently torques acting on it do not
produce rapid changes in its angular momentum. As the
torque produced by the combustion in each cylinder tends
to accelerate the crankshaft, the rotational inertia of the
flywheel resists this action. Similarly, as the torques pro-
duced in the cylinders where compression is occurring
tend to decelerate the crankshaft, the rotational inertia of
the flywheel resists this action and the flywheel tends to
maintain a uniform rate of crankshaft rotation.

If the distribution of mass of a rotating object is
changed, its angular velocity changes so that the angular
momentum remains constant. A skater spinning on the
ice with arms folded, as in Figure 6-20, turns with rela-
tively constant angular velocity. If she extends her arms,
her rotational inertia increases. Since angular momentum
is conserved, her angular velocity must decrease.
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Figure 6-20. Conservation of angu-
lar momentum. When world-class
figure skater Debi Thomas spins
(left), her rotational inertia is
small and her rotational velocity is
high. When she extends her arms
(right), the situation is reversed.
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(QUESTIONS: GROUP A

1.

(a) Define impulse. (b) Define mo-
mentum. (c) Are they vectors or sca-
lars? Explain.

Mathematically derive the relationship
between impulse and momentum.

. What is the difference between an

elastic and an inelastic collision?
How does the law of conservation of
momentum apply to the launch of a
rocket ship?

. If momentum is conserved, what else

must happen when an object is
dropped toward the earth?

Why does a fielder draw his hand
back as he catches a baseball?

GROUP B

7.

10.

11.

12.

13.

14.

You are participating in a Physics
Olympics event called the egg toss.
How could you improve your chances
of catching a tossed egg?

. A diver leaps off a high platform in a

layout position. If the diver pulls into
a tuck position, what will happen to
her rotary speed? Why?

. What is the function of the long pole

carried by a tightrope walker?

How do impulse and momentum ex-
plain why a 110-kg defensive lineman
has more trouble changing direction
than a 75-kg quarterback running at
the same speed?

Can an object with a large mass and
one with a small mass have the same

- momentum? Explain.

(a) Why does a child’s toy top remain
upright if it is spinning, but falls over
as it slows down to a stop? (b) Why
does it slow down?

When one billiard ball strikes another,
there are two possible results. What
are they and under what circum-
stances will each occur?

The safety net under a trapeze artist
is loose. Use your knowledge of im-

15.
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pulse and momentum to explain why.
Describe the situation in Figure 6-15 if
(a) the boy instead of the man does
the pushing and (b) the boy and the
man push simultaneously.

PROBLEMS: GROUP A

1.

An impulse of 20.0 N-s is applied to
a 5.0-kg wagon initially at rest. What
is its final speed?

(a) What impulse is required to stop
a 0.250-kg baseball traveling 42.0 m/s?
(b) If the ball is in the fielder's mitt
for 0.100 s as it is being stopped,
what is the average force acting on
the ball?

A 60.0-g egg moving at 4.8 m/s is
caught by a student. (a) If the time of
interaction is 0.25 s, what is the aver-
age force on the egg? (b) If the maxi-
mum force the egg can withstand is
650 N, what minimum time is re-
quired to keep the egg intact?

A 50.0-kg person jumps from a win-
dow ledge 4.0 m above the pavement.
(a) How fast is he moving as he hits
the ground? (b) What impulse acts on
the person’s legs as he strikes the
ground? (c) If the time of interaction
is 0.060 seconds, how much force is
acting?

. The muzzle velocity of a 50.0-g shell

leaving a 3.00-kg rifle is 400.0 m/s.
What is the recoil velocity of the rifle?

GROUP B
6.

A 1250-kg car is stopped at a traffic
light. A 3550-kg truck moving at
8.33 m/s strikes the car from behind.
What is the new velocity of the sys-
tem if the bumpers lock during the
collision?

A 65-kg person is skiing down a hill.
The skier’s speed at the bottom is

15 m/s. If the skier hits a snowdrift
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and stops in 0.30 s, (a) how far does
she go into the drift? (b) With what
average force will she strike the drift?

8. Calculate the angular momentum of
the rotating earth.

9. A 25-kg wagon moves eastward at
3.5 m/s. A force acting on the wagon
for 4.0 s gives it a speed of 1.3 m/s to
the west. Calculate (a) the impulse
acting on the wagon and (b) the mag-
nitude and direction of the force.

10. A 55.0-kg sailor jumps from a dock
into a 100.0-kg rowboat at rest beside
it. If the linear velocity of the sailor is
5.00 m/s as he leaves the dock, what is
the resultant velocity of the sailor and
the boat?

11. In the multiple-exposure photograph
in Figure 6-21, a large ball approaches
from the top and a smaller one from
the bottom. The mass of the large ball
is 150 g. The photo shows the balls at
equal time interals. By means of a
vector diagram, find the mass of the
smaller ball.

12. An 85.0-g bullet is shot at a 3.00 kg
piece of wood at rest at the edge of a
counter 1.20 m high. If the bullet be-

SUMMARY

Work is the product of a displacement
and the component of the force in the
direction of the displacement. The unit of
work is the joule. Work done by varying
forces can be found by calculating the
area under the curve of a graph in which
the horizontal axis denotes the displace-
ment and the vertical axis denotes the
force. Radian measure is used to compute
work done in rotary motion.

Machines can be used to multiply force
at the expense of distance. The efficiency
of a machine is the ratio of the useful
work output to the total work input and
is expressed as a percentage. Power is the
time rate of doing work. It is measured in
watts. Radian measure is used to com-
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comes embedded in the block and
they land 5.0 m from the counter, what
was the initial speed of the bullet?

13. A bowling ball of mass 8.00 kg, mov-
ing at 2.00 m/s collides with an identi-
cal ball at rest. If the first ball moves
off at 30.0° from its original path,
what are the speeds of the balls as
they separate?

Figure 6-21.

pute power in rotary motion.

Gravitational potential energy is equal
to the work done against gravity to place
an object in position. Thus energy is
measured in units of work. The kinetic
energy of a body moving in a straight
line is directly proportional to the mass
of the body and the square of its velocity.
In rotary motion, the kinetic energy is
directly proportional to the rotational
inertia and the square of the angular
velocity.

Elastic potential energy is directly propor-
tional to the force constant and the
square of the amount of stretch. The law
of conservation of mechanical energy
states that the sum of the potential and



140

kinetic energy of an ideal (friction-free)
energy system remains constant.
Momentum is the product of the mass
of a moving body and its velocity. The
change of momentum of a moving body
is equal to its impulse, which is the prod-
uct of a force and the time interval during
which the force acts. The momentum of a
system of objects is conserved when no
net external forces are acting on the sys-
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tem. This phenomenon is an example of
the law of conservation of momentum.
The reaction principle is an application of
this law. The conservation of momentum
also helps to describe the motion of ob-
jects colliding elastically or inelastically
and in one, two, or three dimensions.
Unless a net external torque acts on a ro-
tating object, its angular momentum is
also conserved.
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angular impulse impulse
angular momentum
efficiency

elastic collision

elastic potential energy
gravitational potential

energy

joule

inelastic collision

law of conservation of
mechanical energy

law of conservation of
momentum

machine

momentum

power

watt

work



